
UCRL-PROC-202082

LAWRENCE

N AT I O N A L

LABORATORY

LIVERMORE

Probability Density Function for  
Waves Propagating in a Straight  
Rough Wall Tunnel 

Hsueh-Yuan Pao 

30 January 2004 

 

This article was submitted to: 
2004 IEEE AP-SInternational Symposium 
 and USNC/URSI National Radio Science  
Meeting 
Monterey, California 
June 20-26 2004
 



This document was prepared as an account of work sponsored by an agency of the United 
States Government. Neither the United States Government nor the University of California nor 
any of their employees, makes any warranty, express or implied, or assumes any legal liability 
or responsibility for the accuracy, completeness, or usefulness of any information, apparatus, 
product, or process disclosed, or represents that its use would not infringe privately owned 
rights. Reference herein to any specific commercial product, process, or service by trade 
name, trademark, manufacturer, or otherwise, does not necessarily constitute or imply its 
endorsement, recommendation, or favoring by the United States Government or the University 
of California. The views and opinions of authors expressed herein do not necessarily state or 
reflect those of the United States Government or the University of California, and shall not be 
used for advertising or product endorsement purposes. 
 
 
 



Probability Density Function for Waves Propagating 
in a Straight Rough Wall Tunnel 

 
 

Hsueh-Yuan Pao 
University of California, Lawrence Livermore National Laboratory 

 
 
 

INTRODUCTION 
The radio channel places fundamental limitations on the performance of wireless 
communication systems in tunnels and caves. The transmission path between the 
transmitter and receiver can vary from a simple direct line of sight to one that is 
severely obstructed by rough walls and corners. Unlike wired channels that are 
stationary and predictable, radio channels can be extremely random and difficult 
to analyze. In fact, modeling the radio channel has historically been one of the 
more challenging parts of any radio system design; this is often done using 
statistical methods. 
 
The mechanisms behind electromagnetic wave propagation are diverse, but can 
generally be attributed to reflection, diffraction, and scattering. Because of the 
multiple reflections from rough walls, the electromagnetic waves travel along 
different paths of varying lengths. The interactions between these waves cause 
multipath fading at any location, and the strengths of the waves decrease as the 
distance between the transmitter and receiver increases. 
 
As a consequence of the central limit theorem, the received signals are 
approximately Gaussian random process. This means that the field propagating in 
a cave or tunnel is typically a complex-valued Gaussian random process. 
 

ANALYSIS 
For this analysis we are considering only high carrier frequencies. It is reasonable 
to suppose that at any point the received field is far from the source as well. 
 
Let us start by representing a transmitted signal as   
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where sl(t) is the modulated baseband signal and fc is the carrier frequency, in the 
GHz range. Since there exist multiple propagation paths, the received signal 
consists of many signals, each of which is described by a propagation delay and 
an attenuation factor. Both the propagation delays and the attenuation factors are 
spatially dependent, as a result of changes in the structure of the medium or 
boundaries. Thus the received bandpass signal is expressed in the form 
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where αn is the attenuation factor for the signal received on the nth path and τn is 
the propagation delay for the nth path. We have 
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It is apparent from (3) that the received signal consists of a sum of a number of 
time-variant phasors having amplitudes αn and phases 2πfcτn. If τn=1/ fc, the phase 
will change by 2π. Assume fc=1 GHz, τn=1 ns will result a 2π phase change, 
which is a small amount for the delay.  If τn>1ns the phase will change 2π-θn=θn. 
 
Let us assume that the cave diameter is 2 meters, for example. It is not difficult to 
show that there is 2 ns propagation delay at a location 1 meter away from the 
transmitter, which is a 4π phase change. If the receiver is located more than 2 
meters away from the transmitter, the phase will change multiple 2π for the 
carrier frequency 1 GHz. It is reasonable to say that the phase probability density 
function is uniformly distributed in 2π range [1] 
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It is clear that the joint probability density function is the product of the 
probability density function of the phase and the probability density function of 
the amplitude. The phase and the amplitude are therefore independent. 
 
Let us assume that the random complex field has the form 
 ( , , , ) ,rz f j iρ φΦ = Φ + Φ  (5) 
where Φr and Φi are real and imaginary parts of the complex field, respectively. 
The joint probability density function of the complex field Φ is written as 
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where mr  and mi are expected values of the real and imaginary parts of the 
complex field, respectively, and σ is the standard deviation. In polar coordinates 
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The Jacobian is |J|=R. Then the joint probability density function of the complex 
field Φ in polar coordinates is 
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where 
 cos sin cos( ),r im m mφ φ θ φ+ = −  (9) 
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The probability density function for the random variable R is 
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By 9.6.16 of [2], we have 
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where I0(x) is the zeroth order modified Bessel function of the first kind. From 
(4.55) of [3], the probability density function for the random field amplitude R is 
Ricean. The parameter m denotes the peak amplitude of the dominant signal.   
 
Casey has derived the expected value and standard deviation for the complex 
modal field in a straight rough-wall tunnel [4]. For normalized Nlth TE or TM 
mode the expected values are 
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where JN(x) is Nth order first kind of Bessel function, pNl is the Nlth mode 
normalized cutoff wave number, kzNl is the Nlth mode wave number, and a is the 
average radius of the tunnel. It is clear that 
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From (17) the peak amplitude of signal m depends on radial variable ρ only, not 
the angular variable. The Nlth mode standard deviation for the TM case 
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ANl and BNl are the Nlth constant coefficients for TM and TE modes, respectively, 
λ0 and λNl  are the free space wavelength and Nlth mode wavelength, respectively. 
ŷ is the free space admittance, and  are power spectral densities such that '( )m zS k
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Here ∆(φ, z) is the roughness of the wall. It is obvious that the standard deviation 
depends on the radial position as well. The Nlth mode standard deviation for the 
TE case is a rather complicated function of m, N, ρ, , . We shall not take 
the space to write it out. 
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CONCLUSION 

The field propagating in caves or tunnels is a complex-valued Gaussian random 
process, by the central limit theorem. We assume that the phase probability 
density function is uniformly distributed over a range of extent 2π. Under this 
assumption the phase and amplitude of the field joint probability density function 
are independent and uncorrelated. We have shown that the probability density 
function for random field amplitude propagating in a straight rough wall tunnel or 
cave is Ricean. This tells us that there is a dominant signal component, such as a 
line-of-sight propagation path. In such a situation, random components arriving at 
different angles are superimposed on a stationary signal. At the output of an 
envelope detector, this has the effect of adding a dc component to the random 
multipath signal [5]. Since both expected value and standard deviation depend 
only on radial position, the probability density function for random field 
amplitude propagating in a straight rough wall tunnel or cave is a radially 
dependent function. 
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